254 research outputs found

    A US Perspective on Innovation Policy: What it Will Take to Regain America's Technological Edge

    Get PDF
    From its very conception, IIASA's Management and Technology Area has been interested in industrial policy issues. This interest increased after the Innovation Management Task started its work. Several collaborative papers have been written which address the problem of industrial policy in different countries or some industrial branches. In spite of the fact that this paper by was written two years ago, it is an excellent introduction into the US scene where industrial policy discussions are an important issue. The interesting issue which is raised concerns the longer-term horizon in government and company activities and their implementation. This is particularly relevant to industrial restructuring which challenges most of the industrially developed and developing countries in the years to come. Therefore this paper is very relevant in solving many recent policy issues

    Consistency of the Shannon entropy in quantum experiments

    Full text link
    The consistency of the Shannon entropy, when applied to outcomes of quantum experiments, is analysed. It is shown that the Shannon entropy is fully consistent and its properties are never violated in quantum settings, but attention must be paid to logical and experimental contexts. This last remark is shown to apply regardless of the quantum or classical nature of the experiments.Comment: 12 pages, LaTeX2e/REVTeX4. V5: slightly different than the published versio

    Computer simulation of Wheeler's delayed choice experiment with photons

    Get PDF
    We present a computer simulation model of Wheeler's delayed choice experiment that is a one-to-one copy of an experiment reported recently (V. Jacques {\sl et al.}, Science 315, 966 (2007)). The model is solely based on experimental facts, satisfies Einstein's criterion of local causality and does not rely on any concept of quantum theory. Nevertheless, the simulation model reproduces the averages as obtained from the quantum theoretical description of Wheeler's delayed choice experiment. Our results prove that it is possible to give a particle-only description of Wheeler's delayed choice experiment which reproduces the averages calculated from quantum theory and which does not defy common sense.Comment: Europhysics Letters (in press

    Debates: Does Information Theory Provide a New Paradigm for Earth Science? Emerging Concepts and Pathways of Information Physics

    Get PDF
    Entropy and Information are key concepts not only in Information Theory but also in Physics: historically in the fields of Thermodynamics, Statistical and Analytical Mechanics, and, more recently, in the field of Information Physics. In this paper we argue that Information Physics reconciles and generalizes statistical, geometric, and mechanistic views on information. We start by demonstrating how the use and interpretation of Entropy and Information coincide in Information Theory, Statistical Thermodynamics, and Analytical Mechanics, and how this can be taken advantage of when addressing Earth Science problems in general and hydrological problems in particular. In the second part we discuss how Information Physics provides ways to quantify Information and Entropy from fundamental physical principles. This extends their use to cases where the preconditions to calculate Entropy in the classical manner as an aggregate statistical measure are not met. Indeed, these preconditions are rarely met in the Earth Sciences due either to limited observations or the far-from-equilibrium nature of evolving systems. Information Physics therefore offers new opportunities for improving the treatment of Earth Science problems.info:eu-repo/semantics/publishedVersio

    A first--order irreversible thermodynamic approach to a simple energy converter

    Full text link
    Several authors have shown that dissipative thermal cycle models based on Finite-Time Thermodynamics exhibit loop-shaped curves of power output versus efficiency, such as it occurs with actual dissipative thermal engines. Within the context of First-Order Irreversible Thermodynamics (FOIT), in this work we show that for an energy converter consisting of two coupled fluxes it is also possible to find loop-shaped curves of both power output and the so-called ecological function against efficiency. In a previous work Stucki [J.W. Stucki, Eur. J. Biochem. vol. 109, 269 (1980)] used a FOIT-approach to describe the modes of thermodynamic performance of oxidative phosphorylation involved in ATP-synthesis within mithochondrias. In that work the author did not use the mentioned loop-shaped curves and he proposed that oxidative phosphorylation operates in a steady state simultaneously at minimum entropy production and maximum efficiency, by means of a conductance matching condition between extreme states of zero and infinite conductances respectively. In the present work we show that all Stucki's results about the oxidative phosphorylation energetics can be obtained without the so-called conductance matching condition. On the other hand, we also show that the minimum entropy production state implies both null power output and efficiency and therefore this state is not fulfilled by the oxidative phosphorylation performance. Our results suggest that actual efficiency values of oxidative phosphorylation performance are better described by a mode of operation consisting in the simultaneous maximization of the so-called ecological function and the efficiency.Comment: 20 pages, 7 figures, submitted to Phys. Rev.

    Field Theory Entropy, the HH-theorem and the Renormalization Group

    Get PDF
    We consider entropy and relative entropy in Field theory and establish relevant monotonicity properties with respect to the couplings. The relative entropy in a field theory with a hierarchy of renormalization group fixed points ranks the fixed points, the lowest relative entropy being assigned to the highest multicritical point. We argue that as a consequence of a generalized HH theorem Wilsonian RG flows induce an increase in entropy and propose the relative entropy as the natural quantity which increases from one fixed point to another in more than two dimensions.Comment: 25 pages, plain TeX (macros included), 6 ps figures. Addition in title. Entropy of cutoff Gaussian model modified in section 4 to avoid a divergence. Therefore, last figure modified. Other minor changes to improve readability. Version to appear in Phys. Rev.

    Evaluation of the Water Film Weber Number in Glaze Icing Scaling

    Get PDF
    Icing scaling tests were performed in the NASA Glenn Icing Research Tunnel to evaluate a new scaling method, developed and proposed by Feo for glaze icing, in which the scale liquid water content and velocity were found by matching reference and scale values of the nondimensional water-film thickness expression and the film Weber number. For comparison purpose, tests were also conducted using the constant We(sub L) method for velocity scaling. The reference tests used a full-span, fiberglass, 91.4-cm-chord NACA 0012 model with velocities of 76 and 100 knot and MVD sizes of 150 and 195 microns. Scale-to-reference model size ratio was 1:2.6. All tests were made at 0deg AOA. Results will be presented for stagnation point freezing fractions of 0.3 and 0.5

    On The Complexity Of Statistical Models Admitting Correlations

    Full text link
    We compute the asymptotic temporal behavior of the dynamical complexity associated with the maximum probability trajectories on Gaussian statistical manifolds in presence of correlations between the variables labeling the macrostates of the system. The algorithmic structure of our asymptotic computations is presented and special focus is devoted to the diagonalization procedure that allows to simplify the problem in a remarkable way. We observe a power law decay of the information geometric complexity at a rate determined by the correlation coefficient. We conclude that macro-correlations lead to the emergence of an asymptotic information geometric compression of the statistical macrostates explored on the configuration manifold of the model in its evolution between the initial and final macrostates.Comment: 15 pages, no figures; improved versio

    Corpuscular model of two-beam interference and double-slit experiments with single photons

    Get PDF
    We introduce an event-based corpuscular simulation model that reproduces the wave mechanical results of single-photon double slit and two-beam interference experiments and (of a one-to-one copy of an experimental realization) of a single-photon interference experiment with a Fresnel biprism. The simulation comprises models that capture the essential features of the apparatuses used in the experiment, including the single-photon detectors recording individual detector clicks. We demonstrate that incorporating in the detector model, simple and minimalistic processes mimicking the memory and threshold behavior of single-photon detectors is sufficient to produce multipath interference patterns. These multipath interference patterns are built up by individual particles taking one single path to the detector where they arrive one-by-one. The particles in our model are not corpuscular in the standard, classical physics sense in that they are information carriers that exchange information with the apparatuses of the experimental set-up. The interference pattern is the final, collective outcome of the information exchanges of many particles with these apparatuses. The interference patterns are produced without making reference to the solution of a wave equation and without introducing signalling or non-local interactions between the particles or between different detection points on the detector screen.Comment: Accepted for publication in J. Phys. Soc. Jpn
    corecore